Upper bounds for the achromatic and coloring numbers of a graph
نویسندگان
چکیده
Dvořák et al. introduced a variant of the Randić index of a graph G, denoted by R′(G), where R′(G) = ∑ uv∈E(G) 1 max{d(u),d(v)} , and d(u) denotes the degree of a vertex u in G. The coloring number col(G) of a graph G is the smallest number k for which there exists a linear ordering of the vertices of G such that each vertex is preceded by fewer than k of its neighbors. It is well-known that χ(G) ≤ col(G) for any graph G, where χ(G) denotes the chromatic number of G. In this note, we show that for any graph G without isolated vertices, col(G) ≤ 2R′(G), with equality if and only if G is obtained from identifying the center of a star with a vertex of a complete graph. This extends some known results. In addition, we present some new spectral bounds for the coloring and achromatic numbers of a graph.
منابع مشابه
-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملOn the edge geodetic and edge geodetic domination numbers of a graph
In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملOn the total graph of Mycielski graphs, central graphs and their covering numbers
The technique of counting cliques in networks is a natural problem. In this paper, we develop certain results on counting of triangles for the total graph of the Mycielski graph or central graph of star as well as completegraph families. Moreover, we discuss the upper bounds for the number of triangles in the Mycielski and other well known transformations of graphs. Finally, it is shown that th...
متن کاملBounds on the achromatic number of partial triple systems
A complete k-colouring of a hypergraph is an assignment of k colours to the points such that (1) there is no monochromatic hyperedge, and (2) identifying any two colours produces a monochromatic hyperedge. The achromatic number of a hypergraph is the maximum k such that it admits a complete k-colouring. We determine the maximum possible achromatic number among all maximal partial triple systems...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 217 شماره
صفحات -
تاریخ انتشار 2017